
Measures of Relationship

The world is made of co-variation! Everywhere we look,
we see patterns. From the spread of stars and the orbits of planets to the
pathways of ants and details of a microchip, we can see that things go together
in predictable ways. The co-variation between a set of variables provides the
underlying building blocks for all the major types of statistical modelling.
Measures of Relationship or Association refer to a wide variety of coefficients
that measure a relationship’s strength, defined in various ways.

In our life, the values of various variables are interrelated.

1.2 Correlation

The ideas of relationships between variables are measured using
statistics known as the correlation coefficient. The two variables are said to be
related if one variable changes in any manner whenever the other variables vary
in a particular manner. The concept of correlation has a philosophical
foundation. Correlation at the descriptive level indicates that whatever
phenomenon varies in a particular manner, another phenomenon varies in a
particular manner, and then these two phenomena are correlated.

Correlation measures relationships. The correlation technique is
decided by the type of scales used in the variables measured. It also serves as a
basis for inferring causation, to explain which variable could be the cause and
which could be the effect. A correlation is a statistical method used to measure
and describe the relationship between two variables. A relationship exists when
changes in one variable tend to be accompanied by consistent and predictable
changes in the other variable.

A correlation typically evaluates three aspects of the
relationship: the direction, the form, the degree. The direction of the
relationship is measured by the sign of the correlation (+ or -). A positive
correlation means that the two variables tend to change in the same direction; as
one increases, the other also tends to increase. A negative correlation means
that the two variables tend to change in opposite directions; as one increases, the
other tends to decrease. The most common form of relationship is a straight line
or linear relationship measured by the Pearson correlation. The degree of the



relationship (the strength or consistency of the relationship) is measured by the
numerical value of the correlation. A value of 1.00 indicates a perfect
relationship and a value of zero indicates no relationship. To compute a
correlation, we need two scores, X and Y, for each individual in the sample.

1.2.1 Linear Correlation

This is the simplest kind of correlation to be found between the
two sets of scores or variables. When the relationship between two sets of
scores or variables can be represented graphically by a straight line, it is known
as a linear correlation. Such a type of correlation reveals the change in one
variable is accompanied by a change or to what extent an increase or decrease in
one is accompanied by the increase in or decrease in the other. The correlation
between two sets of measures of variables can be positive or negative. It is said
to be positive when one variable’s increase (decrease) corresponds to an
increase or decrease in the other. It is said to be negative when an increase
corresponds with a decrease. There is also the possibility of a third type of
correlation which is zero correlation between the two sets of measures of
variables if there exists no relationship between them.

1.2.2 Partial Correlation

If two variables are not related directly but are related through a third
variable, then two variables are said to have a partial correlation.

1.2.3 Positive, negative and zero correlation

Consider the example of the height of men as one phenomenon
and the arm-length as the other phenomenon. As the height increases
correspondingly, the arm –length also increases.



The taller the person, the longer his arm will be. These two phenomenon
variables change together concomitantly. They are correlated; the changes in
both variables are in the same direction.

When two variables are related, they vary; the variations may be in
the same or different directions. If the variables change in the same direction,
the correlation is positive; if they change in a different direction, it is said to be
negative.

Think of the variable intelligence and the skin colour of students. They do not
change together: they are not related, and they are not correlated. They have
zero correlation because the two variables change uniformly in the same
direction in affixed proportion. Here we can perfectly say what would be the
change in one variable for a given change in the other variable without actually
measuring the change.

When two variables change concomitantly in the same direction,
the variables are positively correlated. When these changes follow a fixed
proportion, the relationship (correlation) between them is perfectly positive.
Suppose they change in opposite (different) directions in the same proportion.
Then the correlation is perfectly negative.

As one increases, the other decreases in a fixed proportion. They are
perfectly negatively correlated two variables. Therefore, the relationship
between two variables then may be of three types.



16.2.4 Perfect Correlations

If two variables change together (as scores on one
variable deviate from their mean, scores on the other also predictably deviate
from their mean), we say the two sets of scores “co-vary”; they vary together.
The extent to which the two sets of scores co-vary, that is, the extent of their
variability can be quantified. If proportionate changes in the other variable
accompany the changes in one variable, that correlation is perfect. A perfect
correlation is quantified as one. So, the perfect positive correlation is plus one,
and the perfect negative correlation is minus one.

If two variables change together in the same direction (as one
increases, the other also increases, or as one increases, the other also decreases)
and if the change is not proportionate, the correlation could be better. So, it is
not plus one; it can only be less than one; it may be 0.8, 0.7 or anything below
but above zero.

Similarly, negative relationships may be anything
above -1 and below 0. If the variables change in the same direction, the measure
of the extent of the relationship is positive; if they change in the opposite
direction, then the correlation is negative.

Think of a relationship between time and distance covered.
If the speed is uniformly 20k.m per hour, the distance covered by 1 hour, 2
hours, 3 hours etc., will increase by 20 hours for every one-hour increase. If the
time increases by 1 unit (1 hour), the distance covered will increase by 20km.
Both time and distance increase and they change in the same direction.
Therefore, the relationship (correlation) is positive. The two variables (time and
distance) increase in a fixed proportion (1:20). The relationship here is
positive and also perfect.

This change in one variable affects the change in the other
variable. Two variables are said to be related when a change in one variable
affects the change in the other. In statistics, the degree to which two or more
attributes or measurements on the same group of elements show a tendency to
vary together.

Correlation is a statistical measurement of the relationship
between two variables. Possible correlations range from +1 to –1. A zero
correlation indicates that there is no relationship between the variables. A
correlation of –1 indicates a perfect negative correlation, meaning that as one



variable goes up, the other goes down. A correlation of +1 indicates a perfect
positive correlation, meaning that both variables move in the same direction.
The degree or amount of relationship between the two variables is measured by
the known correlation coefficient, whose values range from -1 to+1. In
statistics, correlation refers to the relationship between two variables. When the
value of one variable varies closely with the variation in another, the two
variables are said to be correlated.

Correlation coefficient is a statistical measure of how close this
relationship is. A correlation coefficient of 1 indicates a perfect or total
dependence between two variables. For example, if we were to calculate the
correlation coefficient between temperature in Fahrenheit and Celsius, it will be
equal to 1. Correlation coefficients of -1 mean the variables are inversely
correlated.

A correlation coefficient of 0 implies no correlation. But
in reality, this only implies that there is no linear relationship. For example,
some graphs of two related variables have shapes like 'U' or 'inverted U'. In
these cases, the relationship exists but is not linear. Therefore, the correlation
coefficient is likely to be close to 0.

1.3 Pearson’s Product Moment Correlation

Pearson’s Product Moment Correlation is used to quantify the
relationship between two variables and find the amount of correlation.

We know that when changes in the other variables accompany
the changes in one variable, both are correlated. We have several changing
measures of the same variable from different persons in a group. (For example,



varying marks of achievement of the students in mathematics). We require a
reference point. The mean of this measure provides this reference point. So, the
changes in the measures of one variable are considered with reference to the
mean of the measures of the other variable. In other words, the changes are the
deviations (differences) from the mean.

Similarly, the changes in the measures from the second variable are
also considered with reference to the mean of the measures of the second
variable. For changes, we consider the deviations. We know that z scores are the
deviation scores expressed in terms of standard deviations. Comparisons of two
measures possibly become truly meaningful when expressed in z scores. When
we want to know whether changes (i.e.) deviations in one variable are
accompanied by changes (that is, deviations) in another variable and quantify
the extent of changes, we use the z scores of the two variables. So, to find the
relationship between two sets of scores (variable), we use the z scores of these
two sets.

To quantify the relationship between two
variables, we require the measures of the same persons or things on the two
variables. For example, emotional and social intelligence scores of the same
person and this way for a group of persons. For each subject, we will have two
measures (two scores). The changes (deviations) of these two scores from the
respective means can be expressed as z scores to make other calculations
meaningful. By converting them into z scores, we express them in the same
units (and also know that z scores can be added, subtracted, multiplied or put
into any arithmetical operation meaningfully, even though the original measures
may be in varying units.

1.4 Steps to Find Out the Extent of Relationship between Two Variables

Express the measures of the variables in the respective z scores
Cross multiply the z scores (i.e. each student, there will be two measures
(English marks and Tamil marks and therefore, each student will have
two z scores, one for English and the other for Tamil. We multiply these
two z scores. This is known as cross multiplication.)
Find the means of the products of the z scores, which gives us the extent
of the relationship. This mean of the products of the z scores of the two
measures of individuals in a group is known as the product-moment
correlation coefficient denoted by the symbol ”r.”
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1.5 Perfect (Maximum) Correlation Co-Efficient is one

We know the standard deviation of z scores is always one. Their
mean is zero. Z-scores are deviation scores. Standard deviation is the
root-mean-squared deviation.
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Z1Z2 is maximum when Z1 =Z2,

That is only when a student gets his z scores in the two subjects are equal (but
the z scores of the students may and often shall vary)
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And we know z is a deviation score.

So will be the mean squared deviation of z scores.∑ 𝑍2

𝑁

The root mean square deviation of z scores (s of Z score) is one.



So, the mean squared deviation will be 12.

Mean squared deviation is s2 or variance.

If s is 1, then s will be 12=1.

So, the value of will be equal to one and∑ 𝑍2

𝑁

we know this is the maximum value that will have. ∑
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So the maximum value that r can have is only 1.

If the z scores of a student in the two sets of subjects are in different
directions, that is, if one z score is plus and the other minus, and if they are
equal and if this is the case of all the students, then we will have the maximum

∑Z1Z 2 value but this will be negative.

[(+Z1) (─Z2) = ─Z1Z 2]

So we get the maximum negative correlation that is -1.

1.6 Product Moment r from Raw Scores

To find the correlation coefficient, we have to calculate the
z scores for each student in the two subjects, cross multiply them and find the
mean of z score products and to find the z score, we need mean and standard
deviation. (We know z= so there is a method adopted which you can𝑋−𝑋

𝑆 ).
calculate all these statistics using only five values. So from the data we collect,
first calculate these five values and using the required values in different
formulae we can calculate mean s and r.

The five values are ∑x, ∑y, ∑x2, ∑y2, ∑x y.

Raw Score Formula

r = N ∑x y ∑x∑y−



                                        [𝑁∑𝑥2 − (∑𝑥 )2 ][𝑁∑𝑦2 –(∑𝑦)2 ]

1.6.1 Product moment ‘r’ for the grouped data

The above formula is used for smaller number of cases. For larger
number of cases, we group the data that is form a correlation matrix or
scatergram or bivariate distribution. The correlation matrix we develop will
represent two variables. So it is a bivariate distribution.

Take convenient class intervals and represent one variable in
columns and the other in rows. The size of the class intervals and the number of
class intervals need not be the same for two variables

Step-1: Decide the size of the class interval for each variable. The sizes
need not be the same

Step-2: Determine the matrix

Step- 3: ‘r’ for bivariate distribution is

r = N ∑ f x y− ∑𝑓𝑥( )(∑𝑦)

[𝑁∑𝑓𝑥2 − (∑𝑓𝑥 )2 ][𝑁∑𝑓𝑦2 –(∑𝑓𝑦)2 ]

1.6.2 Spearman’s rho (rs)

The Spearman correlation is used in two general situations:

It measures the relationship between two ordinal variables, X and
Y, consisting of ranks.
It measures the consistency of the direction of the relationship
between two variables. In this case, the two variables must be
converted to ranks before the Spearman correlation is computed.

The calculation of the Spearman correlation requires the following steps:

Two variables are observed for each individual.



The observations for each variable are rank ordered. The X values and
the Y values are ranked separately.
After the variables have been ranked, the Spearman correlation is
computed by either:

❖ Using the Pearson formula with the ranked data.
❖ Using the special Spearman formula

(assuming there are few, if any, tied ranks).

1.7 Biserial Correlation and Point Biserial Correlation

Some variables can be measured using continuous
scales. For example, height, weight and achievement can be measured using
continuous scales. They are continuous variables. Some variables cannot be
measured using a continuous scale. For example, sex and locality cannot be
measured using a continuous scale. There is no continuity between males and
females. A person He or she cannot move on a continuum from being a male to
being a male. Such a variable is known as dichotomous variable. The other

Examples of dichotomous variables are being a farmer and not being a farmer,
living and being dead, married and unmarried, and owning a car and not owning
a car.

Is there a relationship between body weight and the sex of high school
students?

Weight is a continuous variable, and sex is a dichotomous
variable. The correlation between these two variables cannot be calculated using
either Pearson’s variable or the spearman technique. Pearson requires both
variables to be continuous, and spearman’s ‘rho’ insists that both measures
should be ordinal. Here we have one variable (that is, height continuous and the
other dichotomous (that is, sex).In such cases, we can use another technique
known as point biserial correlation.

Suppose we want to find out the relationship between the height
of the students and their passing or failing the examination. Here height is a
continuous variable. Passing or failing is a dichotomy. There lies a continuum of
scores. This distribution of continuous scores is divided into two(dichotomised).
Those whose scores are above a point in the achievement continuum are
classified as pass, and those below that point are classified as fail. Pass-fail is
not dichotomous but a dichotomised variable, whereas boy-girl is a
dichotomous variable proper. So, in our second example, we want to find out
the relationship between a continuous and a dichotomized variable. In the first



example (weight and sex) the correlation is between a continuous and a
dichotomous variable.

When we want to find to find out correlation between a continuous
and a dichotomized variable the appropriate correlation statistic is biserial
correlation. The biserial and point biserial correlation coefficients are
distinguished by only a conceptual difference. These correlation coefficients
are used when one of the two variables is dichotomous (i.e. it is categorical with
only two categories). A dichotomous variable is one for which there are exactly
two categories.

Often it is necessary to investigate relationships between two variables
when one of the variables is dichotomous. The difference between the use of
biserial and point biserial correlations depends on whether the dichotomous
variable is discrete or continuous. This difference is slight. A discrete or true
dichotomy is one for which there is no underlying continuum between the two
categories.

Whether someone is dead or alive? Here there is no continuum
between the two categories. A person can either be dead or alive; he cannot be a
bit dead only, although a person can be half dead. (He will still be breathing).
However, there is a possibility of a continuum

Passing or failing a statistics test. Some people will fail, while others will
fail by a large margin. Likewise, some people will scrape a pass whilst others
excel. So, although participants fall into two categories, there is an underlying
continuum along which people lie. It is clear that, in this case, there is some



continuum underlying the dichotomy because some people passed or failed
more dramatically than others. The point-biserial correlation coefficient is
used when one variable is a discrete dichotomy, whereas the biserial
correlation coefficient is used when one variable is a continuous dichotomy.

The Pearson correlation formula can also measure the
relationship between two variables when one or both are dichotomous. If
achievement can be dichotomized as pass, fail, why not height into tall and
short? Fix an acceptable arbitrary point and call those above ‘tall’ and those
below as ‘short’. Now you can have a dichotomized height also. Tall short is
dichotomized variable because behind this lies a continuum, that is, height. We
can find the correlation between two dichotomized variables also, as in the case
of tall short and pass-fail. For this, we use tetra chloric correlation.

Suppose we have two dichotomous variables, say sex and
colour blindness. It can either be male or female or either colour blind or not.
In such cases, the appropriate correlation statistic is phi coefficient.

1.8 Correlation and causation

Correlation does not indicate causation. Correlation says that
there is an association between the two variables. It does not say that one
variable is the cause and the other is the effect. The relationship indicated by
correlation is only associative; it is not causal. Causal relation implies necessary
and sufficient conditions. Correlation does not imply these conditions. A causal
relation includes correlation. Naturally, the cause and effect are related. But the
mere association, mere concomitant changes in the two variables, need not
imply cause and effect relationship. The relationship may be due to another
common factor influencing both variables.

Between economics and history scores, suppose the correlation we
found was ▪81. Is there a cause-and-effect relationship between these two sets of
scores? Is Economics the cause and history the effect? Suppose the students
study economics better and increase their scores in Economics. Will the increase
in economics affect the increase in the history scores automatically? No, it will
not. Economics is not a cause; change in it will not produce a given effect in
History. The relationship that correlation that we observed is relative to the
situation under which it is observed or obtained.

1.8.1 Significance of ‘r.’



The relationship between two variables may be a chance
factor or real. Suppose the amount of relationship (the value of correlation
calculated) is so much that it cannot occur due to the chance factor. In that case,
the relationship is said to be significant. The significant correlation (the
amount required to decide that the relationship is real and not due to a chance
factor) depends on the number of cases. we interpret “r” we have to consider
the number of cases also. The interpretation of ‘r” has to base on the type of
relationship that one normally expects to exist in a given situation.

For example, if we consider the relationship between height and
length, an r of .5 will not be considered high, even though it may not be
statistically significant. (i.e. it may be obtained even with a large number of
cases, say 300 and so.). We usually expect a near-perfect correlation between
height and arm length. Even the r=.5 correlation is very low and even
meaningless.

For general purposes, we interpret r as follows

Below . 2 Very low
.2 to . 4 Low
.4 to .6 Average

.6 high
.8 to 1 Very high

The general principle to be followed in the interpretation of r is that r is “purely
relative to the circumstances in which it was obtained and should be interpreted
in the light of those circumstances, very rarely, certainly, in any absolute sense’
(Guilford).

Prediction and Regression

Prediction is based on correlation. When the correlation is
perfect, the predictions will be exact. The correlated variables vary together.
The extent of correlation is expressed as a correlation coefficient. The square of
the correlation coefficient indicates the percentage of variance of one variable
explained by the variance of the other correlated variable. For example if the
correlation between emotional intelligence of teachers and teaching
effectiveness is .6, then .62 =.36, that is 36 percent of variance in teaching
effectiveness is explained by the variance (change) in emotional intelligence of
teachers. We can also say that the variance in emotional intelligence explains



36% of variance in teaching effectiveness. Prediction works only with the
product moment correlation only.

When the correlation is not perfect, the points will not lie
on the straight line, but will lie about a straight line. Our predictions will not be
completely perfect. When there is no correlation that is when there is zero
correlation prediction will be futile. If at all we predict, when the correlation is
zero, the best prediction would be the mean of the second variable. The mean is
the representative score of a variable. For any given value of the first variable,
when correlation is zero, the mean of the second variable will be the best
predictor. When the correlation becomes higher and higher, the prediction will
also become more and more perfect. When r is not equal to 1 and is above zero,
predictions are not perfect.

But we can think of best possible predictor if not perfect, when “r” takes
different values between 0 and 1. When r=0, the best possible prediction is the
mean of the second variable. When r=1, we can predict the exact value of the
second variable for any given value in the first variable. That is when the
correlation is perfect, the prediction is exact, when it is zero the prediction is
the mean of the second variable. This tendency of the predicted value to move
from the exact value when r=1 to the mean of the second variable when r=0 is
known as regression. Regression is the tendency to move towards the mean.
When r takes any value between 1 and 0, the values of the second variable move
from its first “perfect” value (that is when r=1) to the mean of the second
variable. This going back towards the mean is known as regression.

The Latin regredi means to go back. 'Regression' (latin) means
'retreat', 'going back to', 'stepping back'. In a 'regression' we try to (stepwise)
retreat from our data and explain them with one or more explanatory predictor
variables. We draw a 'regression line' that serves as the (linear) model of our
observed data. In a regression, we try to predict the outcome of one variable
from one or more predictor variables. Thus, the direction of causality can be
established.

1 predictor=simple regression

>1 predictor=multiple regression

For a regression you do want to find out about those relations between
variables, in particular, whether one 'causes' the other. Therefore, an
unambiguous causal template has to be established between the causer and the
causee before the analysis! This pattern is inferential. Regression is the



statistical method underlying all inferential statistics (t-test, ANOVA, etc.). All
that follows is a variation of regression.

16.9.1Regression Line

When r=1, the values of the two correlated variables when
plotted on a graph will lie on the same line.

y

x

When r moves away from 1, the points indicating the values of the variables
will not lie on a straight line.

y

x d

We would like to predict the value of the y variable for the ‘d’
value of the x variable. But we do not find the corresponding value of the y
variable in the graph. Only if there is a straight line joining the points, we can
locate the value of one variable for the given value of one variable for another
variable. Such straight lines are available only for perfect correlations, positive
and negative. For simple correlations we have to find out straight lines based on,
which predictions can be made. Such straight lines should help us to get the best
possible predictions.

A line that is possible nearest to all possible points of the
variables will give the best possible predictions. That is the lines should be at
the least possible distance from all the points, therefore has to be drawn for
prediction purposes. Naturally some points will be above this line and some
below this line. The points above the line will have positive points and the
distances those below the line will have negative distances. If so, the total
distance as elsewhere (total deviation from the mean, total rank differences) will



be zero. In order to escape from this zero we simply square the distances. Now
we can find out a line that is at the least squared distance from the point (not all
the least possible distance, but least squared distance possible).This line that is
at the least squared distance from all the points is known as the line of least
square.

a

Line of least square

b

c

Predictions are based on this line of least square. For each value of r
we can have a line of least square. Least square lines are straight lines. Every
straight line has an equation. In fact we do not draw graphs and predict values
of one variable for the given values of the other correlated variable. We use the
equation and make predictions. The line of least square is known as regression
line and the equation of that line is known as regression equation.

On a graph the perfect correlation will form a straight
line. So if we want to predict the measure (value) of one variable (say the one
represented on y-axis) corresponding to a given measure (value) of the other
variable (say the one represented on the x-axis), we can easily find the required
value by erecting a vertical line from the point on the x-axis that denotes the
given measure and finding out the point on the straight line graph where the
vertical line meet it and by finding the y-value of that point.

In graph, every straight line has an equation, if we know the
equation of the straight line, then we can predict using the equation without
drawing the graph. Every change in x variable is accompanied by proportionate
change in the y variable. The correlation will be perfect and form a straight line
on the graph. The equation of this straight line is y=2x. If we know this
relationship then for any value of x, we can find the corresponding y value using
this equation.

16.9.2 Regression Equation and Regression Coefficients

When the correlation is perfect, the z values of
the corresponding x and y variable measures will be same. Suppose we want to
predict the y-score for a given x score (that is mark in English for a given mark



in Tamil) convert the x score into the respective z score. Let it be Zx. Let the
predicted y score be Zy. When the correlation is perfect then the score for the
given Zx score will be Zy' and this Zy will be equal to Zy.When the correlation is'

zero, then the best predicted value of Y will be the mean of Y. The mean of Y, in
Z-score form is zero (the mean of any value Z score set will be 0).So, when the
correlation is zero, the predicted Y score for Zx will be zero, that is Zy will be
zero.

When the correlation ranges between 1 and 0, the value of Zy

will range from Zx to 0 and 0 is the mean of the y scores. The predicted values
regress towards the mean. For various amounts of correlation, the best
predictions of Zy will be

𝑍
𝑌'=𝑟𝑧𝑋'

If r=1, then ZY'= ZX

If r=0, then and 0 is the mean of the ZY scores.𝑍
𝑌'=0

As r comes down from 1 to zero, the amount of regression increases and this
regression is towards the mean.

The general form of the regression equation then will be

𝑍
𝑌'

(predicted) =r ZX (given)𝑍
𝑌'

Similarly if we want to predict X from a given Y, the equation will be

(predicted) =r Zy(given)𝑍
𝑋'

We have thus two regression equations, one to predict Y from given X and the
other to Predict X from a Given Y when X and Y are correlated. Predictions
work one way only: when the correlation is perfect: it will work both ways.

We Know that Zx =       𝑋−𝑋
𝑆

𝑋

ZY =
    𝑌−𝑌

𝑆
𝑌



A predicted score in the Z form is ZY
' (predicted) =r ZX (given)

Converting Z scores into raw scores, the equation becomes

𝑌 − 𝑌 = 𝑟
𝑆

𝑋

𝑆
𝑌

(𝑋 − 𝑋)

and X = r (− 𝑋 
𝑆

𝑦 

𝑆
𝑥

𝑌 − 𝑌)

16.9.3 Regression Coefficients

The regression equation in the deviation form becomes

𝑌 − 𝑌 = 𝑟
𝑆

𝑋

𝑆
𝑌

(𝑋 − 𝑋)

The term is known as regression co –efficient.𝑟
𝑆

𝑋

𝑆𝑦

Usually it is denoted by “b” co-efficient.

16.9.4 What do we do in regression?

In a regression, the predictor variables are labelled 'independent'
variables. They predict the outcome variable labelled 'dependent' variable. A
regression is always a linear regression, i.e., a straight line represents the data
as amodel.

Method of least squares

In order to know which line to choose as the best model of a
given data cloud, the method of least squares is used. We select the line for
which the sum of all squared deviations (SS) of all data points is lowest. This
line is labelled 'line of best fit', or 'regression line'.

Simple regression
The linear regression equation is:

𝑌
𝑖

= 𝑏
0 

+ 𝑏
1 

𝑋
𝑖( ) + 𝑒

𝑖

= outcome we want to predict𝑌
𝑖



= intercept of the regression line𝑏
0 

= slope of the regression line coefficients𝑏
1 

= Score of subjects on the predictor variable𝑋
𝑖

= residual term, error𝑒
𝑖

'Goodness-of-fit'

The line of best fit (regression line) is compared with the
most basic model. The former should be significantly better than the latter. The
most basic model is the mean of the data.

Mean of Y as basic model

The summed squared differences between observed values and the mean, SST,
are big; hence the mean is not a good model of the data.

Sum of squares total: SST

Regression line as a model

Sum of squares residual SSR

The summed squared differences between observed values and the regression
line, SSR, are smaller; hence this regression line is a much better model of the
data

Sum of squares model, SSM

SSM: sum of squared differences between the mean of Y and the regression line
(as our model)

Comparing the basic model and the regression model: R2

The improvement by the regression model can be expressed
by dividing the sum of squares of the regression model SSM by the sum of
squares of the basic model SST:

R2 =
𝑆𝑆

𝑀

𝑆𝑆
𝑇

This is the same measure as the R2 in correlation. Take the square root of R2

and you have the Pearson correlation coefficient r!

R2 ---The basic comparison in statistics is always
to compare the amount of variance that our model can explain with the total



amount of variation there is. If the model is good it can explain a significant
proportion of this overall variance.

Comparing the basic model and the regression model: F-Test

In the F-Test, the ratio of the improvement due to the model
SSM and the difference between the model and the observed data, SSR, is
calculated.

We take the mean sum of squares, or mean squares, MS, for the model, MSM,
and the observed data, MSR:

F =
𝑀𝑆

𝑀

𝑀𝑆
𝑅

The F-ratio should be high (since the model should have
improved the prediction considerably, as expressed in MSM). MSR, the
difference between the model and the observed data (the residual), should be
small.

The coefficient of a predictor

The coefficient of the predictor X is b1. B1 indicates the
gradient/slope of the regression line. It says how much Y changes when X is
changed one unit. In a good model, b1 should always be different from 0, since
the slope is either positive or negative.

Only a bad model, i.e., the basic model of the mean, has a slope of 0.

If b1=0, this means:

• A change in one unit of the predictor X does not change the
predicted variable Y.

• The gradient of the regression line is 0.

T-Test of the coefficient of the predictor

A good predictor variable should have a b1 that is different from
0 (the regression coefficient of the basic model, the mean). This difference is
significant, can be tested by a t-test.

The b of the expected values (0-Hypothesis, i.e., 0) is subtracted from the b of
the observed values and divided by the standard error of b.

𝑡 =
𝑏

𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑
−𝑏

𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑

𝑆𝐸
𝑏



Since =0,𝑏
𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑

t =
    𝑏

𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 

𝑆𝐸
𝑏

t should be * different from 0.

Summary:

This unit covers the concepts of Measures of Relationship.
Measures of Relationship or Association refer to a wide variety of coefficients
which measure strength of relationship, defined in various ways. The ideas of
relationships between variables are measured using statistics known as
correlation coefficient. The two variables are said to be related, if one variable
changes in any manner whenever the other variables varies in a particular
manner. The various types of correlation like Linear Correlation, Partial
Correlation, Positive, Negative and Zero Correlation and Perfect Correlations
and the commonly used correlation namely product moment correlation and
rank difference correlation are discussed here. Finally, Regression is the
statistical method underlying all inferential statistics which is also discussed.

This is an excellent reading for me. It is good to be reminded of these
procedures.

The explanations are very clear to me.


